Members would like to be able to send new IT professionals to learn about the subjects that make geospatial information technology different from mainstream IT. These are basically:

- The spatial data type- commercial data base vendors are now able to store geospatial data in tables as coordinates. This introduces a new way of data modeling and a type of relational data pointer that is unlike traditional RDB pointers.

- Network modeling- connectivity through pipelines is a similar case in point in terms of data modeling and applications.

- Long transaction processing- it is common for a user to "check out" a geospatial area for analysis and update. At the same time, other users may want to use the data concurrently. This requires complex check out/check in processing especially when multiple users are making changes in the same data.

- Spatially oriented user interfaces- the browsing paradigm (panning) is notably from tabular based systems. The actual method of human-computer interaction requires a new way of thinking on the part of software designers.

- Data conversion and acquisition-populating data bases is a complex task utilizing a multiplicity of data sources- public and commercial, manual and digital, raster and vector, based on differing projections and accuracy standards. Preparing this data requires diverse processes such as conflation, coordinate system transformation, geocoding, and translation. The sheer magnitude of this effort is different from traditional IT conversion projects.

- Interoperability- standards are evolving for both data interchange and component "plug compatibility." Systems need to be integrated both with other geospatial systems as well as legacy applications.

Students would learn the impact of the above topics on data modeling, system integration, user interface design, and transaction processing. There would also be an overview covering typical geospatial applications, their users, and chief benefits. There is also interest in a course for people in marketing and sales, and consultants who are new to the industry. This should provide a high-level overview of geospatial information technology and why it exists. It should also have a focus on applications and benefits.
The Education Committee's mission is to foster the development and presentation of quality educational programs and material which will advance and promote the benefits of geospatial information technology to current and prospective members of GITA, other organizations, and all those interested in the technology.

Objectives

- Plan, develop and conduct seminars in conjunction with GITA's Annual Conference and interface with the conference committee.
- Develop at least one new full-day seminar per year and incorporate it into the educational seminar series.
- Plan and conduct at least one abbreviated seminar at regional chapters each year.
- Respond as required to requests from other organizations to provide speakers and/or seminars on geospatial information technology.
- Conduct seminars with all interested user groups and chapters that will pre-book seminars with GITA in conjunction with their respective user group conferences or chapter meetings.
- Conduct an annual review committee meeting to evaluate and update course materials. This includes review of papers and materials prepared for the annual conference and any executive education.
- Have an education column in Networks written by a member of the Education Committee.
- Identify and develop at least one new educational program per year.